Спецпроекты

Цифровизация Искусственный интеллект

В МТУСИ применили связку методов машинного обучения для выявления аномалий в интернет-трафике

Идентификация и классификация интернет-трафика являются важными задачами для обеспечения безопасности и эффективности работы сетей. В области сетевой безопасности значительный интерес вызывает обнаружение аномальных значений из больших объемов информации, создаваемых сетевым трафиком. Аномалии в интернет-трафике – это непредсказуемые, необычные или отклоняющиеся от установленных норм взаимодействия в сети. Они могут указывать на наличие вредоносных программ, взломов или других нежелательных событий.

Возможности методов машинного обучения открывают новые горизонты для точной классификации трафика в обнаружении аномальных значений для предотвращения кибератак. Один из таких методов предложил магистрант Данила Токарев. Об этом CNews сообщили представители МТУСИ.

«Большие массивы данных обладают высокой размерностью, что затрудняет их анализ и принятие решений. В качестве алгоритма выделения отличительных признаков для массива данных в своей работе мы опирались на анализ главных компонент (Principal Component Analysis, PCA). Данное решение помогло значительно увеличить скорость анализа трафика и исключить нерелевантные данные и избыточные характеристики. На этапе предобработки трафик проходил через кластеризацию, осуществляемую методом Fuzzу C Mean (FCM). Данный алгоритм позволил заранее сформировать кластеры и ускорил процесс обработки данных», – сказал Денис Токарев.

Классификация аномалий производилась с помощью алгоритма K-Nearest Neighbor (KNN), который обеспечил высокую точность результатов и был выделен одним из лучших решений для классификации интернет-трафика. Улучшить производительность KNN удалось посредством использования PCA для редукции признаков и применением алгоритма Fuzzy C-Mean для построения кластера перед процессом классификации. Полученная комбинация PCA и алгоритма Fuzzy C-Mean позволила сократить время выполнения алгоритма KNN, повысить точность и увеличить долю верного определения.

В ходе исследования было выявлено, что комбинация алгоритмов машинного обучения позволяет достичь высокой точности обнаружения аномалий в интернет-трафике. Установлено, что существенный вклад в ускорение работы алгоритма KNN вносит PCA, причем скорость выполнения увеличивается примерно в четыре-пять раз.

По результатам проведенных исследований разработчики представили гибридный алгоритм, который основан на совместном использовании методов машинного обучения и предназначен для обнаружения аномалий в интернет-трафике.

Разработанный алгоритм имеет широкий спектр применения в сетевой безопасности, мониторинге сетей, обнаружении вредоносного программного обеспечения и предотвращении кибератак. Он также может быть полезен для провайдеров услуг интернета, чтобы оптимизировать сетевую инфраструктуру и повысить качество обслуживания. Обнаружение аномалий в интернет-трафике имеет огромное значение для системных администраторов, позволяя своевременно обнаруживать вторжения, вредоносные атаки, предотвращать системные сбои и массовое заражение компьютерных систем.

В дальнейшем предлагается использовать связку методов машинного обучения для выявления аномалий в интернет-трафике с высокой точностью и минимальным количеством ложных срабатываний.

Короткая ссылка